Abstract

Boron is an optimal alloying element for liquid phase sintering (LPS) of powder metallurgy (PM) Fe-based materials. However, the influences of various alloying elements on the progress of LPS are still undetermined. The aim of this study was to clarify the effects of carbon and molybdenum on the LPS and microstructure of boron-containing PM steel. The results showed that adding 0.5 wt pct C and 1.5 wt pct Mo, and particularly the former, promotes the LPS and increases the sintered density. With the addition of 0.5 wt pct C, liquid can be generated in two distinct regions, and the secondary liquid improves the densification. After 1523 K (1250 °C) sintering, the increases in sintered densities of Fe-0.4B, Fe-0.4B-1.5Mo, Fe-0.4B-0.5C, and Fe-0.4B-1.5Mo-0.5C steels were 0.33, 0.47, 0.56, and 0.64 g/cm3, respectively. Thermodynamic simulation also demonstrated that the increases in sintered densities were correlated with the liquid volumes formed at 1523 K (1250 °C). In conclusion, adding 0.5 wt pct C to B-containing PM steels facilitates the formation of a secondary liquid phase and higher liquid volume, resulting in better densification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.