Abstract

Since offshore towers are high-cost, high-risk structures, reliability analysis is of great importance in their design. This paper presents a possible practical approach to certify a design through selective critical member reliability estimates. After a brief review of current research in this field, the authors outline a procedure for reliability estimation of structural members in extreme stress and fatigue limit states. A spectral approach for the extreme response statistics with stochastic loading is described. The reliabilities are computed by the Level II first-order second moment (advanced) method. The fatigue reliability is estimated with a narrow-banded stress assumption with discrete, but significant sea states within the life of the structure. Two numerical examples, a three shallow water model and a two-dimensional deep water model are presented along with the influences of stochastic variables (sea state, current, tubular member diameter) on reliabilities (extreme stress and fatigue damage).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.