Abstract

Abstract. The Amazon rainforest evapotranspiration (ET) flux provides climate-regulating and moisture-provisioning ecosystem services through a moisture recycling system. The dense complex canopy and deep root system creates an optimum structure to provide large ET fluxes to the atmosphere, forming the source of precipitation. Extensive land use and land cover change (LULCC) from forest to agriculture in the arc of deforestation breaks this moisture recycling system. Crops such as soybean are planted in large homogeneous monocultures and the maximum rooting depth of these crops is far shallower than forest. This difference in rooting depth is key as forests can access deep soil moisture and show no signs of water stress during the dry season, while in contrast crops are highly seasonal with a growing season dependent on rainfall. As access to soil moisture is a limiting factor in vegetation growth, we hypothesised that if crops could access soil moisture, they would undergo less water stress and therefore would have higher evapotranspiration rates than crops which could not access soil moisture. We combined remote-sensing data with modelled groundwater table depth (WTD) to assess whether vegetation in areas with a shallow WTD had higher ET than vegetation in deep WTD areas. We randomly selected areas of forest, savanna, and crop with deep and shallow WTD and examined whether they differ on MODIS Evapotranspiration (ET), Land Surface Temperature (LST), and Enhanced Vegetation Index (EVI), from 2001 to 2012, annually and during transition periods between the wet and dry seasons. As expected, we found no differences in ET, LST, and EVI for forest vegetation between deep and shallow WTD, which because of their deep roots could access water and maintain evapotranspiration for moisture recycling during the entire year. We found significantly higher ET and lower LST in shallow WTD crop areas than in deep WTD during the dry season transition, suggesting that crops in deep WTD undergo higher water stress than crops in shallow WTD areas. The differences found between crop in deep and shallow WTD, however, are of low significance with regards to the moisture recycling system, as the difference resulting from conversion of forest to crop has an overwhelming influence (ET in forest is ≈2 mm d−1 higher than that in crops) and has the strongest impact on energy balance and ET. However, access to water during the transition between wet and dry seasons may positively influence growing season length in crop areas.

Highlights

  • The Amazon rainforest has been reduced to 80 % of its original size due to deforestation over the past few decades (Davidson et al, 2012)

  • We found no differences in ET, Land Surface Temperature (LST), and Enhanced Vegetation Index (EVI) for forest vegetation between deep and shallow water table depth (WTD), which because of their deep roots could access water and maintain evapotranspiration for moisture recycling during the entire year

  • While we did not find consistent significant differences, in both forest and crop ETdaily we do see a trend towards higher ETdaily in shallow WTD areas for both

Read more

Summary

Introduction

The Amazon rainforest has been reduced to 80 % of its original size due to deforestation over the past few decades (Davidson et al, 2012). Land use and land cover change (LULCC) from forest and savanna to agricultural land disrupts the Amazonian water cycle due to changes in evapotranspiration, infiltration, and runoff (Fearnside, 1997; Lawrence and Vandecar, 2014). Changes in evapotranspiration result in major changes to the water energy balance, as forest vegetation has high evapotranspiration rates and is re-. J. O’Connor et al.: The influence of water table depth on evapotranspiration in the Amazon placed with agricultural vegetation with lower evapotranspiration, which results in a lower latent heat flux and higher sensible heat flux (Swann et al, 2015). A decline in evapotranspiration reduces the available atmospheric moisture, which can reduce rainfall

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call