Abstract

Using pure water in comparison to water-based lubricant containing 4% TiO2 nanoparticles (NPs), the hot rolling tests of 304 stainless steel were carried out at a rolling temperature of 1050 °C under varying rolling reductions and speeds. The effects of lubrication on rolling force, torque, power and contact friction were systematically investigated. The coefficient of friction (COF) during steady-state hot steel rolling was inversely calculated using a developed flow stress model. The COF models including the effects of rolling reduction and speed were proposed via multiple linear regression. The results indicated that the use of the nanolubricant enabled a reduction of rolling force up to 6.1% and decreases in rolling torque and power up to 21.6%, compared to that of water condition. The results obtained from the linear regression agreed well with those from the inverse calculation, suggesting the developed COF models had high accuracy. The lubrication mechanisms were derived from a boundary lubrication regime, owing to ball bearing and mending effects of TiO2 NPs, and formation of thin lubricant film under high rolling pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.