Abstract

In this investigation we explore the effect of unsteady vortical structures on the adiabatic wall temperature distribution in an impinging jet. Treating first the simpler case of a free jet, we introduce a conceptual model for the separation of the total temperature, appealing to the dynamics of particle pathlines and vortex rings in the jet. The presence of a region of higher total temperature on the inside of the jet and a region of lower total temperature toward the jet periphery, predicted by the model, exhibits good agreement with the experimental data taken at high subsonic Mach number. The results from a numerical simulation further confirm the theoretical expectations.Through a similar argument, we show that when a thermally insulated flat plate is inserted into the jet, the wall temperature distribution is modified by the presence of secondary vortical structures, which are induced near, and swept over, the plate surface. When the plate is near the jet nozzle, a region of lower wall temperature, attributable to these additional vortices, is observed in the experimental data. When the plate is further from the nozzle, no secondary vortices are formed and no region of lowered wall temperature is measured. Self-sustaining acoustic resonance, when it occurs, is found to alter significantly this picture of the wall temperature distribution.Although the scope of this work is limited to free and impinging jets, this present topic, along with the previously reported mechanism of the Eckert–Weise effect, exemplifies the wider family of problems in which unsteady vortical structure strongly affects the wall temperature and heat transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call