Abstract
ObjectiveThe aim of this study was to explore differences in functional connectivity and network organization between very preterm born adolescents and term born controls and to investigate if these differences might explain the relation between preterm birth and adverse long-term outcome. MethodsForty-seven very preterm born adolescents (53% males) and 54 controls (54% males) with matching age, sex and parental educational levels underwent high-density electroencephalography (EEG) at 13 years of age. Long-term outcome was assessed by Intelligence Quotient (IQ), motor, attentional functioning and academic performance. Two minutes of EEG data were analysed within delta, theta, lower alpha, upper alpha and beta frequency bands. Within each frequency band, connectivity was assessed using the Phase Lag Index (PLI) and Amplitude Envelope Correlation, corrected for volume conduction (AEC-c). Brain networks were constructed using the minimum spanning tree method. ResultsVery preterm born adolescents had stronger beta PLI connectivity and less differentiated network organization. Beta AEC-c and differentiation of AEC-c based networks were negatively associated with long-term outcomes. EEG measures did not mediate the relation between preterm birth and outcomes. ConclusionsThis study shows that very preterm born adolescents may have altered functional connectivity and brain network organization in the beta frequency band. Alterations in measures of functional connectivity and network topologies, especially its differentiating characteristics, were associated with neurodevelopmental functioning. SignificanceThe findings indicate that EEG connectivity and network analysis is a promising tool for investigating underlying mechanisms of impaired functioning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.