Abstract

The design of ventilation tubes or grommets is thought to have a considerable influence on their performance. A computational model (finite element method) was used to investigate the significance of four design parameters of a commonly used design of ventilation tube. The design parameters were: the length of the shaft, the diameter of the flanges, the thickness of the flanges, and the material type. A statistical analysis technique, known as a factorial analysis of variance, was used to examine the importance of the four design parameters on the dynamical behaviour of the middle ear with the implant in situ and on the magnitude of stress induced at the implant/tympanic membrane interface. We predicted that the ventilation tube alters the frequency response of the middle ear; specifically the shaft length and the thickness of the flanges were found to have a significant effect upon the vibratory pattern at the umbo. A reduced length of tube and an increased size of flange were also found to be significant for minimising membrane stress (both with P < 0.001). Thus, design parameters of critical influence on optimising performance were identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.