Abstract

In this study, we investigate the influence of vegetation variations on dust activity (dust load, dust transport in the troposphere, and dust weather frequency) over Northeast Asia during springtime. By using the Integrated Wind Erosion Modeling System, two model experiments are run over four-month periods, from February 1 to May 31, for each year from 1982 to 2006; one experiment uses the observed atmospheric conditions and vegetation (OBS), and the other uses the specified atmospheric conditions in 2006 and the observed vegetation (CTRL). Comparison of the two model experiments reveals that there are sensitive regions in southeastern Mongolia and central northern China, in which vegetation has a large potential to influence dust activity due to both the high dust emission rate and large variations in vegetation coverage. Over these sensitive regions, vegetation effectively lessens dust loads on interannual and interdecadal timescales; dust load is decreased by 2864 μg m−2 for an increment of 0.1 in the normalized difference vegetation index (NDVI). Vegetation increase in the sensitive areas also reduces two major branches of dust transports in the low troposphere; one stretches from eastern Mongolia to regions northeastward, and the other flows across the south of northeastern China to Korea. In addition to dust loads and transports, vegetation increase in the sensitive areas evidently decreases dust storm frequency and blowing dust frequency, but it exerts a weak influence on the floating dust frequency. In the sensitive regions, as NDVI increases by 0.1, dust storms, blowing dust, and floating dust decrease by 4.0 days/spring, 1.5 days/spring, and 0.2 days/spring, respectively. In summary, vegetation variations in southeastern Mongolia and central northern China have considerable impact on northeast Asian dust during springtime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.