Abstract

Nanocrystal N-doped TiO2 as photoanode material in the dye-sensitized solar cell has been successfully characterized and analyzed. The anatase phase of N-doped TiO2 synthesized by co-precipitation method. TiCl3 as a precursor mixed with ammonia solution with various concentrations, namely, 2, 5 and 7.5%, and calcinated at temperature 400°C over 3 hours. X-ray diffraction (XRD) and UV-Vis spectroscopy were performed to analyze a crystal size and band gap of the samples. The XRD data showed that the crystal size of N-doped TiO2 was 7.4 − 9.9 nm and the measured band gap around 2.64 eV, respectively. I-V characterization of solar cell module shown that the highest power conversion efficiency was the solar cell module that fabricated with 7.5% of ammonia solution with the short circuit current (Jsc) and the efficiency was at 0.784 mA/cm−2 and 0,18%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.