Abstract

The particle transport characteristics have a significant effect on the exposure of residents and pedestrians to traffic pollutants in the street canyon. Around the lakeside environment, the diffusion of water vapor affects the flow characteristics of the gas mixture, which has a considerable influence on particle transport in the street canyon. A computational domain containing water bodies from which droplets were emitted by evaporation, a lakeside avenue and architectural groups were constructed. The RNG k-ε turbulence model and discrete phase model were applied to study the velocity, pressure, density of the airflow and particle transport characteristics in the street canyon with the absolute humidity increase (AHI) of 0, 3.8×10-4 g/kg, 1.7×10-3 g/kg, 3.1×10-3 g/kg. The saturated vapor pressure on the surface of droplets was modified by the pressure correction equation, which can limit the evaporation rate of the droplets. The simulation results demonstrated that, the diffusion of vapor could reduce the airflow velocity and increase the air pressure and density. The particle concentration in the street canyon increased with the AHI. Most of the pathogens in the air are transmitted with the flow of particle, and the study has some guiding significance to prevent the transmission of viruses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call