Abstract

The double-layer coated basalt fiber fabric was prepared using polyurethane as the matrix and adopting a coating technology on the basalt fiber fabric. Firstly, the influence of two types of functional particles, graphite and graphene, on the dielectric properties (the real and imaginary parts and the loss tangent value), shielding effectiveness and mechanical properties of the double-layer coated basalt fiber fabric was analyzed. Then, the double-layer coated basalt fiber fabric of two types of structures, graphite/fabric/graphite and graphene/fabric/graphite, were prepared. Secondly, the influence of the contents of graphite and graphene on the electromagnetic properties and mechanical properties of the double-layer coated basalt fiber fabric using the method of controlling variables was studied. The results showed that the polarizing ability, the loss ability, the attenuating ability and the shielding ability of the double-layer coated basalt fiber fabric for the graphene coating were all superior to those of the graphite coating. Within the range of 0–1100 MHz, when the graphite content was 20%, the polarizing ability, the loss ability and the attenuating ability of the double-layer fabric were the strongest. When the graphene content was 20%, the polarizing ability to electromagnetic waves of the double-layer fabric was the strongest; when the graphene content was 15%, both the loss ability and attenuating ability to electromagnetic waves of the double-layer fabric were the strongest; and when the graphene content was 5%, the shielding ability to electromagnetic waves of the double-layer fabric was the strongest. When the graphite content was 20% and the graphene content was 10%, the displacement was within the range of 0–4.7 mm, and the load was 3411.1 N.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.