Abstract
The search for ionic liquids (ILs) with biochemical and biomedical applications has recently gained great attention. IL containing solvents can change the structure, stability and function of proteins. The study of protein conformation in ILs is important to understand enzymatic activity. In this work, conformational stability and activity of the enzyme in two imidazolium-based ILs (1-butyl 3-methyl-imidozolium and 1-hexyl 3-methyl-imidozoliumbromides) were investigated. We treated glucose oxidase as dimer-active enzyme in different IL concentration and seen that GOx activity was inhibited in the presence of ILs. Our experimental data showed that inhibition of activity and reduction of enzyme tertiary structure are more for hexyl than butyl derivative. These experimental results are in agreement with foregoing observations. To find a possible mechanism, a series of molecular dynamics simulation of the enzyme were performed at different IL concentration. The structure parameters obtained from MD simulation showed that conformational changes at the active site and FAD-binding site support the hypothesis of enzyme inhibition at the presence of ILs. Root mean square deviation and fluctuation calculations indicated that the enzyme has stable conformation at higher IL concentration, in agreement with experimental observation. But hexyl derivative has a much stronger stabilization effect on the protein structure. In summary, the present study could improve our understanding of the molecular mechanism about the ionic liquid effects on the structure and activity of proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.