Abstract

This paper studied the influence of two common sterilization techniques, ethylene oxide (EO) and gamma irradiation (GI), on the corrosion rate of four Mg-based materials in CO2 -bicarbonate buffered Hanks' solution. The four materials were: high-purity (HP)-Mg, ZE41, ultra-high purity (XHP)-Mg, and XHP-ZX00. The corrosion rate was measured through mass loss (Pm ) and hydrogen evolution (PH ). Two-way analysis of variance (ANOVA) was conducted to assess the effect of the sterilization techniques on the corrosion rates across the four materials. The ANOVA analyzed the variables of (1) material, (2) sterilization condition (EO, GI, and an unsterilized control group), and (3) the interaction between these two independent variables. Neither sterilization technique (EO and GI) significantly influenced the corrosion rate as measured by Pm (p < 0.84) nor PH (p < 0.08). This result was consistent across the four materials tested, as there was no interaction between the test variables of material and sterilization condition for Pm (p < 0.49) or PH (p < 0.27). As neither EO nor GI influenced the corrosion rates, either of these techniques warrants consideration for use on Mg-based medical implants and devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1907-1917, 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.