Abstract

Rheotaxis is a widespread behavior with many potential benefits for fish and other aquatic animals, yet the sensory basis of rheotaxis under different fluvial conditions is still poorly understood. Here, we examine the role that vision and the lateral line play in the rheotactic behavior of a stream-dwelling species (Mexican tetra, Astyanax mexicanus) underboth rectilinear and turbulent flow conditions. Turbulence lowered the flow speed at which threshold levels of rheotactic performance were elicited, an effect that was independent of sensory condition. Compared to fish with access to visual information, fish without access exhibited cross-stream casting behaviors and a decrease in the accuracy with which they oriented upstream. Visual deprivation effects were independent of availability of lateral line information and whether flow was rectilinear or turbulent. Fish deprived of lateral line information exhibited no measureable deficits under any of the conditions of this study. This study indicates that rheotactic abilities persist in the absence of both vision and lateral line under both turbulent and non-turbulent conditions, but that turbulence enhances either the motivation or ability of fish to orient to slow currents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call