Abstract

A bellows-type Reciprocating-Mechanism Driven Heat Loops (RMDHL) is a novel heat transfer device that could attain a high heat transfer rate through a reciprocating flow of the working fluid inside the heat transfer device. Although the device has been tested and validated experimentally, analytical or numerical study has not been undertaken to understand its working mechanism and provide guidance for the device design. In an effort to improve earlier numerical models of the RMDHL, different turbulence models for the RMDHL design have been studied and compared with prior experimental results to select the most suitable turbulence modeling techniques. The governing equations have been numerically solved using a CFD solver. For the three-dimensional fluid flow, several turbulence models have been studied for the RMDHL, including Standard, RNG, and Realizable k-ɛ Models, Standard and SST k-ω Models, Transition k -kL-ω Model and the Transition SST Model. The results of the simulations have been analyzed and ranked using numerical model calibration template. It was found that the standard k-ω Models provided the least accurate results while the RNG-k-ɛ Model provided the most accurate predictions. It is expected that the results will help improve the accuracy of the work on the RMDHL modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.