Abstract

In current investigation, tape is used to augment pressure drop and heat rate inside heat exchangers in existence of nanofluid. To do this, the three-dimensional model of the twisted tape is chosen for our investigation. This study dedicated on the heat transfer intensifications when significant parameters such as pitching ratio, height ratio and inlet velocity are changed. In order to simulate this model, computational fluid dynamic method with the simple algorithm is applied with k–e (RNG) model for the modeling of the non-laminar flow through the tube due to the presence of the turbulator. Obtained results show a reasonable agreement with experimental data. Our results show that the efficiency of the H2O-CuO nanofluid considerably increases as the Reynolds number augmented in the tube. Moreover, the rate of exergy declines (more than 35%) as the height ratio increased from 0.3 to 0.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call