Abstract

The potential role of tropical Pacific forcing in driving the seasonal variability of the Arctic Oscillation (AO) is explored using both observational data and a simple general circulation model (SGCM). A lead–lag regression technique is first applied to the monthly averaged sea surface temperature (SST) and the AO index. The AO maximum is found to be related to a negative SST anomaly over the tropical Pacific three months earlier. A singular value decomposition (SVD) analysis is then performed on the tropical Pacific SST and the sea level pressure (SLP) over the Northern Hemisphere. An AO-like atmospheric pattern and its associated SST appear as the second pair of SVD modes. Ensemble integrations are carried out with the SGCM to test the atmospheric response to different tropical Pacific forcings. The atmospheric response to the linear fit of the model’s empirical forcing associated with the SST variability in the second SVD modes strongly projects onto the AO. Idealized thermal forcings are then designed based on the regression of the seasonally averaged tropical Pacific precipitation against the AO index. Results indicate that forcing anomalies over the western tropical Pacific are more effective in generating an AO-like response while those over the eastern tropical Pacific tend to produce a Pacific-North American (PNA)-like response. The physical mechanisms responsible for the energy transport from the tropical Pacific to the extratropical North Atlantic are investigated using wave activity flux and vorticity forcing formalisms. The energy from the western tropical Pacific forcing tends to propagate zonally to the North Atlantic because of the jet stream waveguide effect while the transport of the energy from the eastern tropical Pacific forcing mostly concentrates over the PNA area. The linearized SGCM results show that nonlinear processes are involved in the generation of the forced AO-like pattern.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.