Abstract

The skin microbiome, characterized by an overgrowth of Staphylococcus aureus, plays an important role in the pathogenesis of atopic dermatitis (AD). Multidisciplinary treatment in alpine climate is known for its positive effect on disease severity in children with AD and can result in a different immune response compared with moderate maritime climate. However, the effect on the composition of the skin microbiome in AD is unknown. To determine the effect of treatment in alpine climate and moderate maritime climate on the microbiome for lesional and non-lesional skin in children with difficult to treat AD. Alpine climate treatment led to a significant change in the microbiota on lesional skin, whereas no significant change was found after moderate maritime climate. On both lesional and non-lesional skin, we observed a significant increase in Shannon diversity and a significant decrease in both Staphylococcus abundance and Saureus load after alpine climate treatment. The decrease in Saureus was significantly larger on lesional skin following alpine climate treatment compared with moderate maritime climate treatment. Staphylococcus epidermidis load was stable over time. Alpine climate treatment leads to significant changes in the composition of the skin microbiome in children with AD, mainly caused by a reduction in the Staphylococcus genus. This study shows new perspectives in the potential mode of action for therapies in AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.