Abstract

This paper examines some approaches to modeling and managing traffic flows in modern megapolises and proposes using the methods and approaches of the percolation theory. The author sets the task of determining the properties of the transport network (percolation threshold) when designing such networks, based on the calculation of network parameters (average number of connections per crossroads, road network density). Particular attention is paid to the planarity and nonplanarity of the road transport network. Algorithms for building a planar random network (for modeling purposes) and calculating the percolation thresholds in the resulting network model are proposed. The article analyzes the resulting percolation thresholds for road networks with different relationship densities per crossroad and analyzes the effect of network density on the percolation threshold for these structures. This dependence is specified mathematically, which allows predicting the qualitative characteristics of road network structures (percolation thresholds) in their design. The conclusion shows how the change in the planar characteristics of the road network (with adding interchanges to it) can improve its quality characteristics, i.e., its overall capacity.

Highlights

  • Controlling and balancing flows in transport networks is one of the main problems of modern conurbations

  • It is necessary to look at the topology of a transport network in order to solve the dynamic task of traffic redistribution

  • Let us consider some of the current approaches to traffic management in transport systems which fall into two categories: local and systematic management

Read more

Summary

Introduction

Controlling and balancing flows in transport networks is one of the main problems of modern conurbations. Urbanization and the development of the motor transport industry have led to the emergence of huge vehicle flows moving within our current limited traffic infrastructures, and this has led to an increase in delays and, a loss of time and money, as well as increased emissions of harmful substances into the atmosphere. All this entails the requirement for traffic flow control and balancing models and methods to be developed. Let us consider some of the current approaches to traffic management in transport systems which fall into two categories: local and systematic management

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.