Abstract

We consider the Saint-Venant torsion problem of composite shafts. Two different kinds of imperfect interfaces are considered. One models a thin interphase of low shear modulus and the other models a thin interphase of high shear modulus. The imperfect interfaces are characterized by parameters given in terms of the thickness and shear modulus of the interphases. Using variational principles, we derive rigorous bounds for the torsional rigidity of composite shafts with cross-sections of arbitrary shapes. The analysis is based on the construction of admissible fields in the inclusions and in the matrix. We obtain the general expression for the bounds and demonstrate the results with some particular examples. Specifically, circular, elliptical and trianglar shafts are considered to exemplify the derived bounds. We incorporate the cross-section shape factor into the bounds and show how the position and size of the inclusion influence the bounds. Under specific conditions, the lower and upper bounds will coincide and agree with the exact torsional rigidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.