Abstract
Compartmental modeling of dynamic PET data enables quantification of tracer kinetics in vivo, through the obtained model parameters. The dynamic data is sorted into frames during or after the acquisition, with a sampling interval usually ranging from 10 s to 300 s. In this study we wanted to investigate the effect of the chosen sampling interval on kinetic parameters obtained from a 2-tissue model, in terms of bias and standard deviation, using a complete Monte Carlo simulated dynamic 18F_FLT PET study. The results show that the bias and standard deviation in parameter Kl is small regardless of sampling scheme or noise in the time-activity curves (TACs), and that the bias and standard deviation in k4 is large for all cases. The bias in Va is clearly dependent on sampling scheme, increasing for increased sampling interval. In general, a too short sampling interval results in very noisy images and a large bias of the parameter estimate, and a too long sampling interval also increases bias. Noise in the TACs is the largest source of bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.