Abstract
Cold in-place recycling (CIR) mills existing bound pavement with a stabilizing agent to remove all surface distresses and some structural distresses. This research investigated the influence of extending the time after crushing, aggregate type, and asphalt emulsion type on four CIR compaction metrics and on the raveling test. Aggregate was crushed in the lab to mimic the milling process of CIR and was mixed with laboratory produced asphalt emulsion at various times after crushing. Three types of aggregate were used, including one field reclaimed asphalt pavement (RAP), a limestone-based laboratory-produced RAP, and a syenite-based laboratory-produced RAP. Two types of cationic medium set (CMS) asphalt emulsions were also used: a proprietary and a commodity asphalt emulsion. One of the compaction metrics, the number of gyrations to 76% Density ( N76), was found to have the most promise for capturing the charge on the RAP, as the limestone aggregate and proprietary asphalt emulsion saw the highest resistance to compaction. These two materials were the most reactive so it was reasonable that they caused the fastest break of the asphalt emulsion. The raveling test did not produce similarly conclusive results. Whereas some trends from the raveling test showed the ability to capture charge on the RAP, perhaps the four-hour cure before the raveling test may have masked any influence of time after crushing and asphalt emulsion type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.