Abstract

The development of high-performance, veneer-based wood composites is a topic of increasing importance due to the high design flexibility and the comparable mechanical performance to solid wood. Part of this improved mechanical performance can be contributed to the size effect present in wood. Based on previous findings in the literature, this size effect can be either strengthening or weakening. The presented study investigates the influence of thickness and load angle on the tensile strength and tensile stiffness of peeled veneers compared to thin sawn timber. Veneers with thicknesses of 0.5 ± 0.05 mm, 1.0 ± 0.05 mm and 1.5 ± 0.05 mm as well as sawn wood with thicknesses of 1.5 ± 0.1 mm, 3.0 ± 0.1 mm and 5.0 ± 0.1 mm were tested in tension under different load angles (0°, 45° and 90°). The results only partly confirm a size effect for strength parallel to the grain. The strength perpendicular to the grain increased significantly between 0.5 mm and 1.5 mm, with a significant decrease between 1.5 mm and 5.0 mm. The presence of lathe checks diminished the strength perpendicular to the grain of the veneers by about 70% compared to solid wood, partly overshadowing a possible strengthening effect. It was concluded that a transition from a strengthening to a weakening behaviour lies in the range of multiple millimetres, but further investigations are needed to quantify this zone more precisely. The presented results provide a useful basis for the development of veneer-based wood composites with a performance driven layer-thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.