Abstract

ABSTRACTThe initial stage of some HLW disposal systems will be characterised by a large thermal pulse in the near-field environment, due to the heat of the radioactivity decay. This will lead to the development of a transient spatial thermal gradient between the hot canister and the cold geological medium, which could significantly affect the composition and the elemental distribution within the near-field environment. A coupled experimental and modelling work is presented in order to determine the influence of a thermal gradient on water-rock interaction processes. First experiments with a simulated nuclear glass evidenced mass transfer processes leading to chemical differentiation in the solid phases between the hot and the cold end of the system. The relevance of these experimental results to the case of a HLW disposal is strongly supported by in-situ experiments at Stripa, in which a realistic EBS under thermal gradient developed exactly the same mass transfers.In order to understand the driving force of these processes, we tried to model simplified experiments by using a mixing cell geochemical model built upon the geochemical code EQ3/EQ6. The discrepancies between modelling and experiments indicate the existence of coupled processes involving irreversible precipitation.Finally, thermal gradients were applied in nuclear glass-clay interaction experiments to enhance elemental migrations. The main results are: (i) a re-crystallisation of the initial clay toward a more silicic one through incorporation of elements released by the glass, (ii) a strong influence of clay chemistry on the nuclear glass secondary phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.