Abstract

The influence of a thermal wake due to gas injection and due to a pulsating optical discharge (POD) on the aero-dynamic-drag force of a body in a supersonic air flow with Mach number M = 1.45 are experimentally examined. With the help of a single-component aerodynamic balance, the influence of the injected subsonic jet and the thermal wake produced by POD on the aerodynamic drag of a hemisphere-on-cylinder model was studied. It is shown that the observed aerodynamic-force reduction phenomenon can be made more pronounced by increasing the laser power and pulse repetition frequency, or by decreasing the distance between the model and the pulsating optical discharge. The maximum aerodynamic-force reduction (up to 15%) due to the thermal-wake action was observed at a maximum laser-radiation power of W = 2.3 kW and at a pulse rate of f = 90 kHz. The joint effect due to the argon jet and due to the POD caused an aerodynamic-drag force reduction reaching 30%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call