Abstract

PurposeAs ocular dryness and glaucoma are more prevalent with increasing age, understanding how the tear film affects tonometry is important. The present study aims to understand the impact that changes in the tear film have on intraocular pressure (IOP), corneal hysteresis, and corneal resistance factor measurements. MethodsCross-sectional research was conducted and 37 patients were assessed. The tear film lipid layer and the non-invasive break-up time (NIBUT) were evaluated using the Tearscope Plus (Keeler, Windsor, UK). Dry eye symptoms were evaluated using the Ocular Surface Disease Index (OSDI) questionnaire. IOP was measured using rebound tonometry and the Ocular Response Analyzer (ORA, Reichert). Corneal biomechanical properties were measured using ORA. ResultsIt was found that an increase in the IOP measured with the iCare was directly correlated with the subclass that evaluated symptomatology associated with environmental factors (r = 0.414, p<0.05, Spearman). Goldmann-correlated IOP (IOPg) and Corneal-compensated IOP (IOPcc) values were statistically significantly different between the various interferometric patterns (p<0.05). It was also found that an increase in the corneal biomechanical properties measured with ORA was directly correlated with the overall scores obtained when using the OSDI and some of its subclasses. ConclusionsTear film interferometric patterns were shown to have some impact on the IOP measured using ORA. The IOP measured with iCare seems to be related to the symptomatology obtained from OSDI. Corneal biomechanical properties were related to the OSDI total score and some of its subclasses. An increase in symptomatology was associated with an increase in the measured biomechanical properties of the cornea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call