Abstract

In this work, two types of nanoporous alumina membranes were prepared and tested. Structural features of the samples obtained by using different acids were investigated by scanning electron microscopy (SEM). And further SEM-images were analyzed by different types of fractal dimension estimation methods. The transmission and scattering of accelerated He+ ions were studied in experiments on the ion irradiation of dielectric channels based on porous alumina. An ion accelerator was used as a source of the He+ beam with an energy of 1.7 MeV. Ion scattering was studied by Rutherford backscattering spectrometry. Helium transition through nanoporous alumina at various angles between the normal to the sample and the beam direction were observed. It is shown that the porous structure of anodic aluminum oxide is excellent as a dielectric matrix of nanocapillaries. Owing to the small angle scattering, it allows for the transportation of the accelerated charged particles through the dielectric capillaries, and, as a result, the localization of high energy ion irradiation effects. Additionally, according to the transmission of UV–V is spectra, the energy gaps of samples obtained were calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.