Abstract

Abstract Convectively triggered waves are the main driver of the tropical stratospheric circulation. In atmospheric models, the model’s resolution limits the length of the simulated wave spectrum. In this study, the authors compare the tropical tropospheric wave sources, their projection on the wave field in the lower stratosphere, and the circumstances of their upward propagation in the atmospheric model ECHAM6 with three spectral truncations of T63, T127, and T255. The model internally generates the quasi-biennial oscillation (QBO), which dominates the variability in the tropical stratosphere. This analysis focuses on two opposite phases of the QBO to account for the influence of the background wind field on the wave filtering. It is shown that, compared to the high-resolution model versions, the T63 version has less convective variability and less wave momentum in the lower stratosphere at wavenumbers larger than 20, well below the version’s truncation limit. In the low-resolution version, the upward propagation of the waves is further hindered by the highly active (relative to the high-resolution versions) horizontal diffusion scheme. However, even in the T255 version of ECHAM6, the convective variability is too small compared to TRMM observations at periods shorter than 2 days and wavelengths shorter than 1000 km. Hence, to model a realistic tropical wave activity, the convective parameterization of the model has to improve to increase the day-to-day precipitation variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call