Abstract
GPS radio occultation (RO) ionospheric products obtained by Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission during the year of 2014 and the observations from 3 digisonde stations which are located at different latitudes are used to study the influence of different time and space collocation windows on the comparisons of the ionospheric characteristic parameters (ICPs), including the peak density and peak height, derived from the two techniques. The results show that the correlation coefficients (CC) and the standard deviation of the absolute biases (SDAB) between the ICPs derived from the two techniques vary distinctly under different spatial and time collocation windows. Generally, the CC (SDAB) of the ICPs decrease (increase) as the size of the collocation window increases in time dimension or in space dimension. The rate of change of the statistic parameters with the increase in the size of the collocation window in time dimension and space dimension is analyzed for each digisonde station. It is found that within the collocation window of 60min,20°,20°, the influence of the increase of 1° in the space window on the statistical comparison is much more significant than that of the increase of 1 min in the time window, and it is suggested that there can be appropriate relaxation on the time window within the threshold of 60 min to get a balance between the quality of the comparison results and the number of the matched pairs. In addition, it is found that the same variations in the longitude window and in the latitude window may have different influences on the comparison results when the horizontal gradients in electron density are distinctly different along different directions at the digisonde station, and strict space collocation window is preferred when comparing the observations from COSMIC RO with those from the digisonde station in such cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.