Abstract

IntroductionIn the compound muscle action potential (M wave) recorded using the belly-tendon configuration, the contribution of the tendon electrode is assumed to be negligible compared to the belly electrode. We tested this assumption by placing the reference electrode at a distant (contralateral) site, which allowed separate recording of the belly and tendon contributions. MethodsM waves were recorded at multiple selected sites over the right quadriceps heads and lower leg using two different locations for the reference electrode: the ipsilateral (right) and contralateral (left) patellar tendon. The general parameters of the M wave (amplitude, area, duration, latency, and frequency) were measured. Results(1) The tendon potential had a small amplitude (<30%) compared to the belly potential; (2) Changing the reference electrode from the ipsilateral to the contralateral patella produced moderate changes in the M wave recorded over the innervation zone, these changes affecting significantly the amplitude of the M−wave second phase (p = 0.006); (3) Using the contralateral reference system allowed recording of short-latency components occurring immediately after the stimulus artefact, which had the same latency and amplitude (p = 0.18 and 0.25, respectively) at all recording sites over the leg. ConclusionsThe potential recorded at the “tendon” site after femoral nerve stimulation is small (compared to the belly potential), but not negligible, and makes a significant contribution to the second phase of belly-tendon M wave. Adopting a distant (contralateral) reference allowed recording of far-field components that may aid in the understanding of the electrical formation of the M wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.