Abstract

AbstractContinuous methanol photooxidation in the gas phase is a promising method to produce valuable chemicals like formaldehyde or methyl formate in addition to hydrogen under mild conditions. The influence of the reaction conditions on the selectivity of methanol oxidation to formaldehyde is studied using a heated flat‐plate flow photoreactor illuminated by an LED array (λmax = 368 nm) and Pt‐modified SrTiO3. A combination of online analytical methods allowed to quantify all gaseous products during extended time‐on‐stream (> 48 h TOS). The selectivity to formaldehyde is found to be primarily determined by the residence time and the process temperature. At a low methanol to water ratio, methanol conversion and evolution of CO2 are favored, whereas the light intensity primarily influenced the apparent quantum yield from 5.1 to 1.8% at 9.36 to 52.93 mW cm−2, respectively, and the methanol conversion thus determining the economic efficiency of the process. Operation temperatures higher than 110 °C resulted in a strong deactivation of the catalyst while simultaneously the formation of CO at the expense of formaldehyde selectivity is favored. This study demonstrates the importance of understanding the influence of relevant reaction conditions and the potential of selective photocatalytic gas‐phase oxidation of small molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.