Abstract

Optical and spectral methods were used to study nanostructures formed in the reduction of ionic selenium in the selenite-ascorbate redox system in aqueous solutions of polyvinylpyrrolidone, a physiologically active polymer. The weight ratio between the selenium: polymer complex components (ν) was varied over a wide range (ν = 0.01−0.2). The adsorption of a substantial number of macromolecules (up to 1000 at ν = 0.1−0.2) on selenium nanoparticles was observed experimentally. This resulted in the formation of supramolecular spherical nanostructures with a high polymeric shell density. The Gibbs energies of macromolecule-Se0 nanoparticle interactions were calculated for polymeric nanostructures in the region of the formation of stable dispersions. The flow birefringence, dynamic light scattering, and spectrophotometry methods were used to determine the region of saturation of the adsorption capacity of selenium nanoparticles in selenium-containing nanocomposites (ν = 0.1−0.2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.