Abstract
The paper presents the results of large-scale molecular dynamics simulations of the irreversible bimolecular reaction A+B --> C+B for the simple liquid composed of mechanically identical soft spheres. The systems with the total number of molecules corresponding to 10(7)-10(9) are considered. The influence of the concentration of a quencher (B) on the surviving probability of A and the reaction rate is analyzed for a wide range of the concentrations and for two significantly different reduced densities. It is shown that the quencher concentration dependence effect (QCDE) is, in fact, a composition of two QCDE effects: the short-time QCDE that increases the reaction rate and the long-time QCDE that decreases it. The paper also analyzes the influence of the concentration on the steady-state rate constant, k(ss), obtained by integrating the surviving probability. The excess in k(ss) due to finite quencher concentration changes the sign from negative to positive while going from low to high concentrations. Generally, the excess is extremely weak. It attains a 1% level only if the concentration is very high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.