Abstract

BackgroundAMP-activated protein kinase (AMPK) plays an important role in the regulation of glucose and lipid metabolism in skeletal muscle. Many pigs of Hampshire origin have a naturally occurring dominant mutation in the AMPK γ3 subunit. Pigs carrying this PRKAG3 (R225Q) mutation have, compared to non-carriers, higher muscle glycogen levels and increased oxidative capacity in m. longissimus dorsi, containing mainly type II glycolytic fibres. These metabolic changes resemble those seen when muscles adapt to an increased physical activity level. The aim was to stimulate AMPK by exercise training and study the influence of the PRKAG3 mutation on metabolic and fibre characteristics not only in m. longissimus dorsi, but also in other muscles with different functions.MethodsEight pigs, with the PRKAG3 mutation, and eight pigs without the mutation were exercise trained on a treadmill. One week after the training period muscle samples were obtained after euthanisation from m. biceps femoris, m. longissimus dorsi, m. masseter and m. semitendinosus. Glycogen content was analysed in all these muscles. Enzyme activities were analysed on m. biceps femoris, m. longissimus dorsi, and m. semitendinosus to evaluate the capacity for phosphorylation of glucose and the oxidative and glycolytic capacity. Fibre types were identified with the myosin ATPase method and in m. biceps femoris and m. longissimus dorsi, immunohistochemical methods were also used.ResultsThe carriers of the PRKAG3 mutation had compared to the non-carriers higher muscle glycogen content, increased capacity for phosphorylation of glucose, increased oxidative and decreased glycolytic capacity in m. longissimus dorsi and increased phosphorylase activity in m. biceps femoris and m. longissimus dorsi. No differences between genotypes were seen when fibre type composition was evaluated with the myosin ATPase method. Immunohistochemical methods showed that the carriers compared to the non-carriers had a higher percentage of type II fibres stained with the antibody identifying type IIA and IIX fibres in m. longissimus dorsi and a lower percentage of type IIB fibres in both m. biceps femoris and m. longissimus dorsi. In these muscles the relative area of type IIB fibres was lower in carriers than in non-carriers.ConclusionsIn exercise-trained pigs, the PRKAG3 mutation influences muscle characteristics and promotes an oxidative phenotype to a varying degree among muscles with different functions.

Highlights

  • AMP-activated protein kinase (AMPK) plays an important role in the regulation of glucose and lipid metabolism in skeletal muscle

  • For example m. masseter is a muscle that is mainly active during the chewing process and m. biceps femoris seems to be a muscle that is more active than m. semitendinosus and m. longissimus dorsi, when pigs are trained on a treadmill [10,11]

  • Fibre type composition and mean fibre area None of m. masseter, m. biceps femoris, m. semitendinosus or m. longissimus dorsi showed any difference between genotypes in the percentage of type I, IIA and IIB fibres when evaluated from the ATPase stains

Read more

Summary

Introduction

AMP-activated protein kinase (AMPK) plays an important role in the regulation of glucose and lipid metabolism in skeletal muscle. Longissimus dorsi, containing mainly type II glycolytic fibres These metabolic changes resemble those seen when muscles adapt to an increased physical activity level. The prevalence of the PRKAG3 mutation in RN- Hampshire pigs has likely been propagated by its favourable effects on the growth rate and on the meat content of the carcass [1,2] This PRKAG3 mutation is a substitution in the PRKAG3 gene (R225Q), which encodes a when a muscle is trained which leads to a demand for glucose uptake and activation of AMPK to restore the glycogen used during exercise. Longissimus dorsi [4,9] These metabolic changes resemble those seen in pigs when muscles have adapted to an increased physical activity level [10,11]. The aim of this study was to examine the effect of the PRKAG3 mutation on both the metabolic profile and the fibre characteristics in different muscles (m. longissimus dorsi, m. biceps femoris, m. semitendinosus and m. masseter) after exercise-induced stimulation of AMPK and glycogen metabolism

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call