Abstract
Seven different carotenoids with the number of conjugated double bonds (N) from 5 to 11 were incorporated in vitro into carotenoidless complexes LH2 of the sulfur bacterium Allochromatium vinosum strain MSU. The efficiency of their incorporation varied from 4 to 99%. The influence of N in the carotenoid molecules on the energy transfer efficiency from these pigments to bacteriochlorophyll (BChl) in the modified LH2 complexes was studied for the first time. The highest level of energy transfer was recorded for rhodopin (N = 11) and neurosporene (N = 7) (37 and 51%, respectively). In the other carotenoids, this parameter ranged from 11 to 33%. In the LH2 complexes studied, we found no direct correlation between the decrease in N in carotenoids and increase in the energy transfer efficiency from these pigments to BChl.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.