Abstract

Species distribution models (SDMs), which relate recorded observations (presences) and absences or background points to environmental characteristics, are powerful tools used to generate hypotheses about the biogeography, ecology, and conservation of species. Although many researchers have examined the effects of presence and background point distributions on model outputs, they have not systematically evaluated the effects of various methods of background point sampling on the performance of a single model algorithm across many species. Therefore, a consensus on the preferred methods of background point sampling is lacking. Here, we conducted presence-background SDMs for 20 vertebrate species in North America under a variety of background point conditions, varying the number of background points used, the size of the buffer used to constrain the background points around the occurrences, and the percentage of background points sampled within the buffer (“spatial weighting”). We evaluated the accuracy and transferability of the models using Boyce index, overlap with expert-generated range maps, and area overpredicted and underpredicted by the SDM (and AUC for comparability with other studies).SDM performance is highly dependent on the species modelled but is affected by the number and spread of background points. Models with little spatial weighting had high accuracy (overlap values), but extreme extrapolation errors and overprediction. In contrast, SDMs with high transferability (high Boyce index values and low overprediction) had moderate-to-high spatial weighting. These results emphasize the importance of both background points and evaluation metric selection in SDMs. For other, more successful metrics, using many background points with spatial weighting may be preferred for models with large extents. These results can assist researchers in selecting the background point parameters most relevant for their research question, allowing them to fine-tune their hypotheses on the distribution of species through space and time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call