Abstract

This paper presents the results of research on the microstructure, mechanical, and tribological properties of Cu/0.5 wt.% MWCNT (multi-walled carbon nanotube) sintered composite materials produced by powder metallurgy. The purpose of this research was to investigate the impact of carbon nanotube modifications on the uniformity of their dispersion and the effectiveness of their bonding with the matrix. The MWCNTs were modified by chemical oxidation. Additionally, a modification of the ingredient mixing method utilizing ultrasonic frequencies was employed. The tests were carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers hardness tests, static compression tests, and wear tests using the pin-on-disc method. Furthermore, mechanical properties and strain distribution analyses of the micro-specimens were conducted using the Micro-Fatigue System (MFS). The implemented modifications had a positive effect on the dispersion of MWCNTs in the copper matrix and on the mechanical and tribological properties of the sinters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call