Abstract
Abstract This study examines the modulation of tropical cyclone (TC) activity by the Madden–Julian oscillation (MJO) in the Fiji, Samoa, and Tonga regions (FST region), using Joint Typhoon Warning Center best-track cyclone data and the MJO index developed by Wheeler and Hendon. Results suggest strong MJO–TC relationships in the FST region. The TC genesis patterns are significantly altered over the FST region with approximately 5 times more cyclones forming in the active phase than in the inactive phase of the MJO. This modulation is further strengthened during El Niño periods. The large-scale environmental conditions (i.e., low-level relative vorticity, upper-level divergence, and vertical wind shear) associated with TC genesis show a distinct patterns of variability for the active and inactive MJO phases. The MJO also has a significant effect on hurricane category and combined gale and storm category cyclones in the FST region. The occurrences of both these cyclone categories are increased in the active phase of the MJO, which is associated with enhanced convective activity. The TCs in the other MJO phases where convective activity is relatively low, however, show a consistent pattern of increase in hurricane category cyclones and a concomitant decrease in gale and storm category cyclones. Finally, TC tracks in different MJO phases are also objectively described using a cluster analysis technique. Patterns seen in the clustered track regimes are well explained here in terms of 700–500-hPa mean steering flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.