Abstract
BACKGROUND: Congenital deformities of the spine are a group of serious congenital defects of the vertebrae, which can manifest themselves in the clinical picture as an isolated pathology of the axial musculoskeletal system, and are associated with congenital defects of internal organs and other systems. Recently, the TBX6 gene has been identified as the genetic cause of congenital scoliosis in about 11% of cases. This subtype of scoliosis is classified as TBX6-associated congenital scoliosis. The TBX6-associated congenital scoliosis phenotype is characterized by butterfly-shaped vertebrae and hemivertebrae in the lower thoracic and lumbar regions without pronounced malformations of the spinal cord.
 AIM: Our aim is to study and evaluate data from foreign and domestic scientific publications devoted to the study of the candidate gene for congenital scoliosis TBX6.
 MATERIALS AND METHODS: The following databases of scientific publications such as PubMed, Cochrane Library, Web of Science, SCOPUS, MEDLINE, e-Library, Cyberleninka were used to write this review. The inclusion criteria were systematic reviews, meta-analyses, multicenter studies, controlled cohort studies, uncontrolled cohort studies of patients with congenital spinal deformities. The exclusion criteria were clinical cases, observations, conference proceedings, congenital scoliosis in genetic syndromes, congenital scoliosis associated with defects of the nervous system.
 RESULTS: In order to achieve this goal, 70 scientific publications were studied relating to the data analysis of the candidate gene for congenital scoliosis TBX6. Among 49 publications that were identified, 2 were domestics, and the rest were foreign publications. These studies provided information on the molecular analysis of genes that cause congenital spinal deformities in humans and animals.
 CONCLUSIONS: An analysis of the published research work on this topic indicates the presence of a significant effect of mutations in the TBX6 gene, leading to the appearance of congenital scoliosis.
 Advances in elucidating the genetic contribution to the development of congenital spinal deformities and the molecular etiology of clinical phenotypes may uncover the opportunities for further refinement of the classification of signs of congenital scoliosis in accordance with the underlying genetic etiology.
Highlights
Congenital deformities of the spine are a group of serious congenital defects of the vertebrae, which can manifest themselves in the clinical picture as an isolated pathology of the axial musculoskeletal system, and are associated with congenital defects of internal organs and other systems
The TBX6 gene has been identified as the genetic cause of congenital scoliosis in about 11% of cases
This subtype of scoliosis is classified as TBX6-associated congenital scoliosis
Summary
Congenital deformities of the spine are a group of serious congenital defects of the vertebrae, which can manifest themselves in the clinical picture as an isolated pathology of the axial musculoskeletal system, and are associated with congenital defects of internal organs and other systems. The TBX6 gene has been identified as the genetic cause of congenital scoliosis in about 11% of cases. This subtype of scoliosis is classified as TBX6-associated congenital scoliosis. The TBX6-associated congenital scoliosis phenotype is characterized by butterfly-shaped vertebrae and hemivertebrae in the lower thoracic and lumbar regions without pronounced malformations of the spinal cord
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Pediatric Traumatology, Orthopaedics and Reconstructive Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.