Abstract
Molecular beam mass spectrometry is a powerful diagnostic technique, which can be used for the measurement of absolute number densities of reactive species in non-equilibrium reactive plasmas. However, the calibration of absolute number densities is susceptible to systematic errors. Critical issues are the proper design of the sampling system and the correction of the background signal. Here we discuss the effect of reflections of particles from the molecular beam in an ionizer, formation of additional background particle density in the ionizer, and its effect on the density calibration of reactive particle densities. A Monte Carlo simulation of particle trajectories in the ionizer is used to estimate the detection probability of a beam particle after the collision with the ionizer wall. The simulation shows that as much as two-third of the signal can be due to scattered particles in the commercially available mass spectrometers. This effect leads to systematic underestimation of densities of reactive particles, which are reactive at the surface and, therefore, do not have any background density. A simple change in the ionizer geometry is suggested, which can significantly reduce this problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.