Abstract

In this paper the interface behavior between an infinite strip of a granular mate- rial and a rough boundary under plane shearing is numerically investigated using a micro-polar continuum approach. Particular attention is paid to the influence of a fluctuation of micro-polar boundary conditions along the interface on the evolution of shear strain localization within the granular material. The mechanical behavior of the cohesionless granular material is described with a micro-polar hypoplastic model. The evolution equations for the stress and the couple stress are non-linear tensor valued functions which model inelastic behavior. The investigations show that the micro-polar boundary conditions have a strong influence on the location and thickness of the zone of strain localization when relative displacements within the interface are excluded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.