Abstract

Unlike the flat Cu sheet, we employed Cu foam to explore the specific porous effect on the expanding specific area. We found that the foam structure is superior to the sheet feature in the specific location from the morphology investigation. In the practical measurement of surface area, we found that the adsorbate could aptly agglomerate, resulting in a consequential block in the transport path. The specific location of the Cu foam was underestimated because the channels of the deep foam layer were blocked by the agglomerated adsorbate. To explore the protonation process of the electro-reduction, we adopted the carbonate electrolyte as the control group in contrast to the experimental group, the bicarbonate electrolyte. In the carbonate electrolyte, the primary intermediate was shown to be CO molecules, as verified using XPS spectra. In the bicarbonate electrolyte, the intermediate CO disappeared; instead, it was hydrogenated as a hydrocarbon intermediate, CHO*. The bicarbonate ion was also found to suppress electrocatalysis in the deep structure of the Cu foam because its high-molecular-weight intermediates accumulated in the diffusion paths. Furthermore, we found a promotion of the oxidation valence on the electrode from Cu2O to CuO, when the electrode structure transformed from sheet to foam. Cyclic voltammograms demonstrate a succession of electro-reduction consequences: at low reduction potential, hydrogen liberated by the decomposition of water; at elevated reduction potential, formic acid and CO produced; and at high reduction potential, CH4 and C2H4 were formed from −1.4 V to −1.8 V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call