Abstract

This paper presents a methodology to assess the influence of the correlation-covariance structure of measurement errors in online monitoring over the propagation of uncertainties, applied to wet-weather environmental indicators in sustainable urban drainage systems (SUDSs). The effect of auto-correlated and heteroskedastic errors in measured time-series over the estimated probability density function (PDF) of different environmental indicators is analyzed for a wide variety of possible error structures in the data. For this purpose, multiple correlation-covariance structures are randomly generated from exploring the parametric space of a linear exponent autoregressive (LEAR) model, employing a Bayesian-based Markov Chain Monte Carlo sampling technique. Significant differences tests are proposed to identify the most correlated parameters of the correlation-covariance error model with statistics of the environmental indicator PDFs. The method is applied to total suspended solids (TSS) and chemical oxygen demand (COD) time-series recorded during 13 rainfall events at the inlet and outlet of a SUDS train (stormwater settling tank-horizontal constructed wetland). In this case, results showed that the total error in the estimation of the analyzed environmental indicators is mostly explained by standard uncertainties (flattening of the PDFs) rather than bias contributions (displacement of the PDFs). The correlation-covariance model parameters related to the temporal delimitation of hydrographs/pollutographs and the intensity of the autocorrelation showed to have the strongest influence in the propagation of measurement errors (flattening/displacement of the PDFs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.