Abstract

In intact rats, an inhibitory mechanism counteracts the increase in excitability of a flexor reflex seen in spinal animals following high-intensity, repetitive stimulation of C-fibres. We tested the hypothesis that the rostral ventromedial medulla (RVM) is involved in these processes. Electromyographic responses elicited by electrical stimulation of the sural nerve, were recorded from the ipsilateral biceps femoris in halothane-anaesthetised, sham-operated or RVM-lesioned rats. There were no significant differences between the C-fibre reflexes in the two groups in terms of their thresholds, latencies, durations or mean recruitment curves. The excitability of the C-fibre reflex was tested following 20 s of high-intensity homotopic electrical conditioning stimuli at 1 Hz. During the conditioning period, the EMG responses first increased in both groups (the wind-up phenomenon), but then decreased in the sham-operated rats and plateaued in the RVM-lesioned rats. These effects were followed by inhibitions that were very much smaller in the RVM-lesioned rats, both in terms of their magnitudes and their durations. It is concluded that the RVM is involved in inhibitory feedback mechanisms elicited by temporal summation of C-fibre afferents that both counteract the wind-up phenomenon and trigger long periods of inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.