Abstract

Due to the development of corrosion-resistant lightweight, todays automotive manufacturers typically use zinc coated sheet metals in the forming process. However, zinc abrasion in industrial presses decreases the process stability and often causes interruption of the whole process. The application of high strength steels leads to a significant increase of the temperature due to the plastic work. So far a detailed, quantitative analysis of the relation between temperature and zinc abrasion is not available. Therefore, this paper examines the impact of the temperature on abrasion behaviour in sheet metal processes. To achieve this, a progressive die was built. The deep drawing stage of this tool is connected to a cooling / heating system in order to obtain a constant temperature during the forming process. A variety of different galvanized sheet metals compared to commonly used tool materials has been tested. For each combination of materials five experiments at different temperatures were performed to determine the effect of the temperature on the zinc abrasion. Applying the method of total reflection x-ray fluorescence (TXRF) the quantity of zinc abrasion was measured. A relation between low temperatures and reduced zinc abrasion can be clearly observed. Industrial experiments revealed that temperature exerts a high influence on the zinc abrasion. The new insights into the impact of the temperature show a significant way to lower the zinc abrasion and therefore increase the process stability in deep drawing processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call