Abstract

The influence of temperature and stacking fault energy (SFE) on the strain-hardening behavior and critical resolved shear stress for twinning was investigated for three Fe–22/25/28Mn–3Al–3Si wt.% transformation- and twinning-induced plasticity (TRIP/TWIP) steels. The SFEs were calculated by two different methods, density functional theory and statistical thermodynamic modeling. The dislocation structure, observed at low levels of plastic deformation, transitions from “planar” to “wavy” dislocation glide with an increase in temperature, Mn content, and/or SFE. The change in dislocation glide mechanisms from planar to wavy reduces the strain hardening rate, in part due to fewer planar obstacles and greater cross slip activity. In addition, the alloys exhibit a large decrease in strength and ductility with increasing temperature from 25 to 200 °C, attributed to a substantial reduction in the thermally activated component of the flow stress, predominate suppression of TRIP and TWIP, and a significant increase in the critical resolved shear stress for mechanical twinning. Interestingly, the increase in SFE with temperature had a rather minor influence on the critical resolved shear stress for mechanical twinning, and other temperature dependent factors which likely play a more dominant role are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.