Abstract

Despite the increased awareness of heterogeneous reactions of SO2 on mineral particles, the knowledge of how temperature influences the product species and kinetic parameters remain a crucially important part in atmospheric research. Here, we reported the formation of sulfur-containing species on hematite particles under various temperature and humidity conditions by mean of in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and ion chromatography (IC). High temperature is helpful in the ionization of H2SO3, making sulfite compounds occupy a great share among total products. The whole reaction could be divided into three stages according to the formation rate of hydroxyl groups. High temperature brings about more activated SO2 and then results in the increased uptake coefficients with increasing temperature in the initial reaction stage. On the contrary, moisture absorption on particles is inhibited by high temperature, leading to the decreased uptake coefficients with increasing temperature in the latter two stages. Observed enthalpy and entropy, as well as activation energy values for relevant reactions were calculated. Overall, the product specie and reaction rate vary with temperature and humidity conditions, as well as reaction stages. This work broadens the knowledge of heterogeneous reactions on mineral dust influenced by temperature, and consequently provides important opportunities for atmospheric model improvements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.