Abstract

A systematic study of new photophysical and photochemical processes in solutions is continued by the example of a recently found phenomenon of redistribution of the intensities of two fluorescence bands of N,N′-Dimethylaminobenzonitrile (DMABN) in polar solutions at room temperatures under selective irradiation by light with different photon energies in the region of the long-wavelength absorption band. The effects observed are explained using data of quantum-mechanical calculations, which reveal that solutions of these systems are very likely to contain rotational isomers with different orientations of the dimethylamino group with respect to the plane of the benzonitrile residue. The excited-state charge transfer reactions in these rotamers occur in different ways and, hence, with different rates, because of which the intensity ratio of recorded fluorescence bands is different for different wavelengths of selective excitation. In this study, the influence of the temperature on the red-edge excitation effect observed in the fluorescence of DMABN solutions in acetonitrile is studied in the temperature range of 274–313 K using the previously used selective excitation method. It is found that these effects manifest themselves at any temperature within this range, but are especially strong at 313 K. The parameters of the dual fluorescence that are most sensitive for recording of the considered effects are determined, and the obtained temperature dependences are interpreted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.