Abstract
In order to increase the areal recording density of hard disk drive beyond 1 Tb/in2, the flying height has to be reduced to several nanometers. At such a low flying height, particles and lube contaminations, which could lead to a transient vibration and flying height modulation in a hard disk drive, are becoming more and more serious. In this work, it studies the influence of temperature and humidity on the air flow pattern, velocity and shear stress distribution on the air bearing surface (ABS) of slider using a self-developed simulator. It first solves the generalized steady state Reynolds equation with slip boundary conditions. Then it solves the reduced Navier-Stokes (N-S) equation with slip boundary conditions to get the air velocity distribution, i.e., identify the air flow pattern on the ABS. The stagnation lines and areas of air flow are calculated to judge the contamination area. On the other hand, it calculates the air shear stress distribution on the ABS since the air shear stress is the main driving force for the lubricant and particles migration and contaminations. After that, the impact of the temperature and humidity on the air flow pattern is analyzed by applying the Sutherland equation and mixed gas viscosity calculation equation. The simulation results indicate that the impact of temperature and humidity on the air flow pattern is un-conspicuous. However, the peak velocity of the air flow, which contains no vapor, reduces almost 10%, and the peak air flow shear stress increases less than 1.5%, with the increase of operational temperature from 298.15 K to 343.15 K. In addition, the peak velocity of the air flow increasing almost 4%, and the peak air flow shear stress keeps almost same, with the increase of the operational mole fraction of vapor from 5% to 15%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.