Abstract

Simple SummaryUnderstanding animal responses to stressful stimuli is a fundamental aspect to evaluating animal welfare. Stress-induced hyperthermia (SIH) is a term used to describe a short-term increase in body temperature that occurs in response to stressful stimuli. Recently there has been increasing interest in SIH as a physiological measure of psychological stress in livestock species. Previously, studies have suggested that cattle with more excitable temperaments exhibit an increased stress response. This study evaluated the influence of temperament on SIH, during a standardized handling procedure in Bos taurus cattle. In this study, body temperature increased, regardless of sex or temperament traits, characterizing SIH. Nevertheless, both flight speed (FS) and crush score (CS) were associated with an elevated rectal temperature (TREC) 30 min prior to the handling procedure, and this continued from the start of handling (T0) to 10 min post-handling (T10). The results from this study suggest that temperament may be related to variation in SIH in cattle during handling. Understanding the variation in behavioral and physiological response to stressful events may enable the development of new measures for genetic selection in cattle. Previous studies have indicated that cattle with more excitable temperaments exhibit an increased stress response. The objective of this study was to investigate the relationship between temperament traits, handling, and stress-induced hyperthermia (SIH) in beef cattle. Rectal temperatures (TREC, °C) of 60 purebred Angus cattle (30 heifers, 30 steers; 235.2 ± 5.11 kg) were recorded at 20 s intervals from 30 min prior to handling until two hours post handling. All cattle were exposed to a standardized handling procedure consisting of (i) being restrained in a weighing box for 30 s; (ii) being held within the crush for 30 s; and then (iii) being restrained in a head bail for 60 s. Cattle temperaments were evaluated via three traits: (1) agitometer score (AG); (2) crush score (CS); and (3) flight speed (FS) during the handling procedure. Agitometer scores and FS measures were used to describe an AG category (AGCAT) and an FS category (FSCAT) that were used to classify animals into three temperament categories: 1, calm; 2, intermediate; and 3, temperamental. Pearson’s correlation coefficients were used to evaluate the associations between (i) AG, CS, FS, and TREC 30 min prior to entry into the weighing box (T-30) and then at 1 min intervals between time of entry into the weighing box (T0) until 10 min post-weighing (T10); and (ii) the relationship between AG, CS, and FS. The relationship between TREC and temperament traits over the 2.5 h were modeled by using a first-order autoregressive repeated measures model. Flight speed had strong to moderate associations with TREC at T-30 (r ≥ 0.37; p ≤ 0.006) and between T0 and T10 (r ≥ 0.36; p ≤ 0.01). There were moderate associations amongst TREC between T0 and T10 and CS (r ≥ 0.31; p ≤ 0.01). A weak relationship existed with CS (r = 0.16; p = 0.16). There were no associations between AG and TREC at T-30 (r ≥ −0.15; p = 0.84) or between T0 and T10 (r ≤ 0.04; p ≥ 0.4). Rectal temperature, irrespective of sex and temperament traits, was influenced by time (p < 0.0001), and maximum TREC (39.3 ± 0.04 °C) occurred between 4 and 5.7 min after entry into the weighing box. In addition, CS (p = 0.007) influenced TREC in these cattle. There were also time × temperament trait × sex interactions with the CS (p = 0.0003) and FSCAT (p = 0.043) categories; however, time × temperament trait interactions were not statistically significant. Results from this study suggest that cattle with excitable temperaments, as evaluated by FS and CS, have a greater increase in TREC. In addition, these results suggest that a relationship exists between basal TREC and FS and CS. Together, these results highlight that temperament, as assessed by FS and CS, influences both basal TREC and the peak temperature recorded following handling but does not influence the magnitude of change in TREC post handling.

Highlights

  • In livestock production enterprises, temperament is an important consideration, as individuals that are classified to have more excitable temperaments have been associated with decreased average daily gain [1,2]; reduced carcass quality characteristics [2,3]; and reduced immune function [4,5].previous studies have suggested that cattle with more excitable temperaments exhibit an increased stress response [6,7,8,9]

  • Investigating the influence of temperament traits on body temperature may be of importance in the changing global environment [63], as the results from this study suggest that cattle with more excitable temperaments may have higher basal TREC, which may indicate that these animals may have an increased susceptibility to heat load

  • The variations in TREC observed within this study suggest that the standardized handling procedure elicited a temperature response that was characteristic of stress-induced hyperthermia (SIH) associated with psychological stress

Read more

Summary

Introduction

Previous studies have suggested that cattle with more excitable temperaments exhibit an increased stress response [6,7,8,9]. As cattle temperament becomes more excitable/temperamental/reactive, their reactivity to human contact and handling procedures can become more aggressive or fearful [10], which may result in a heightened stimulation of catecholamines and glucocorticoids [11,12]. The latter suggests that the functional characteristics of the hypothalamic-pituitary-adrenal axis may vary with animal temperament [8,9]. Cattle temperament traits may influence how an animal responds to routine handling and husbandry procedures on-farm [10,15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call